Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.302
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732129

Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.


DNA Methylation , Epigenesis, Genetic , Humans , Forensic Genetics/methods , Aging/genetics , Aging/metabolism , Biomarkers , Forensic Sciences/methods
2.
Genes (Basel) ; 15(4)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38674373

The polymerase chain reaction (PCR) has played a fundamental role in our understanding of the world, and has applications across a broad range of disciplines. The introduction of PCR into forensic science marked the beginning of a new era of DNA profiling. This era has pushed PCR to its limits and allowed genetic data to be generated from trace DNA. Trace samples contain very small amounts of degraded DNA associated with inhibitory compounds and ions. Despite significant development in the PCR process since it was first introduced, the challenges of profiling inhibited and degraded samples remain. This review examines the evolution of the PCR from its inception in the 1980s, through to its current application in forensic science. The driving factors behind PCR evolution for DNA profiling are discussed along with a critical comparison of cycling conditions used in commercial PCR kits. Newer PCR methods that are currently used in forensic practice and beyond are examined, and possible future directions of PCR for DNA profiling are evaluated.


DNA Fingerprinting , Forensic Sciences , Polymerase Chain Reaction , Humans , Polymerase Chain Reaction/methods , Forensic Sciences/methods , DNA Fingerprinting/methods , DNA/genetics , DNA/analysis , Forensic Genetics/methods
3.
Arch Med Sadowej Kryminol ; 73(3): 210-233, 2024.
Article En, Pl | MEDLINE | ID: mdl-38662464

The purpose of this paper is to formulate recommendations for the disclosure of biological traces in the laboratory and the handling of forensic evidence submitted for identification tests, recommended by the Polish Speaking Working Group of the International Society for Forensic Genetics. The paper organizes the knowledge of the most relevant stages of preliminary analysis of biological traces based on both literature sources and those resulting from years of research practice. Recommendations formulated in the course of multi-stage expert consultations contained in this study should be used in the development of laboratory procedures applied during the execution.


Forensic Genetics , Humans , Poland , Forensic Genetics/standards , Forensic Genetics/methods , Forensic Genetics/legislation & jurisprudence , Societies, Scientific/standards , DNA Fingerprinting/standards , Disclosure/standards , Disclosure/legislation & jurisprudence
4.
Arch Med Sadowej Kryminol ; 73(4): 294-307, 2024.
Article En | MEDLINE | ID: mdl-38662482

The purpose of this paper is to formulate recommendations for the disclosure of biological traces in the laboratory and the handling of forensic evidence submitted for identification tests, recommended by the Polish Speaking Working Group of the International Society for Forensic Genetics. The paper organizes the knowledge of the most relevant stages of preliminary analysis of biological traces based on both literature sources and those resulting from years of research practice. Recommendations formulated in the course of multi-stage expert consultations contained in this study should be used in the development of laboratory procedures applied during the execution. * The research is part of doctoral dissertation of Dagmara Lisman entitled "Genetic analysis of a skeleton site revealed during the works on the premises of the former German Forced Labor Camp Treblinka I."


Forensic Anthropology , Humans , Poland , Forensic Anthropology/methods , Burial , Phylogeny , Forensic Genetics/methods , Body Remains
5.
BMC Genomics ; 25(1): 329, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566035

BACKGROUND: Previously, a novel multiplex system of 64 loci was constructed based on capillary electrophoresis platform, including 59 autosomal insertion/deletions (A-InDels), two Y-chromosome InDels, two mini short tandem repeats (miniSTRs), and an Amelogenin gene. The aim of this study is to evaluate the efficiencies of this multiplex system for individual identification, paternity testing and biogeographic ancestry inference in Chinese Hezhou Han (CHH) and Hubei Tujia (CTH) groups, providing valuable insights for forensic anthropology and population genetics research. RESULTS: The cumulative values of power of discrimination (CDP) and probability of exclusion (CPE) for the 59 A-InDels and two miniSTRs were 0.99999999999999999999999999754, 0.99999905; and 0.99999999999999999999999999998, 0.99999898 in CTH and CHH groups, respectively. When the likelihood ratio thresholds were set to 1 or 10, more than 95% of the full sibling pairs could be identified from unrelated individual pairs, and the false positive rates were less than 1.2% in both CTH and CHH groups. Biogeographic ancestry inference models based on 35 populations were constructed with three algorithms: random forest, adaptive boosting and extreme gradient boosting, and then 10-fold cross-validation analyses were applied to test these three models with the average accuracies of 86.59%, 84.22% and 87.80%, respectively. In addition, we also investigated the genetic relationships between the two studied groups with 33 reference populations using population statistical methods of FST, DA, phylogenetic tree, PCA, STRUCTURE and TreeMix analyses. The present results showed that compared to other continental populations, the CTH and CHH groups had closer genetic affinities to East Asian populations. CONCLUSIONS: This novel multiplex system has high CDP and CPE in CTH and CHH groups, which can be used as a powerful tool for individual identification and paternity testing. According to various genetic analysis methods, the genetic structures of CTH and CHH groups are relatively similar to the reference East Asian populations.


Genetics, Population , Siblings , Humans , Phylogeny , China , INDEL Mutation , Microsatellite Repeats , Forensic Genetics/methods , Gene Frequency
6.
Genes (Basel) ; 15(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674444

The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system. Furthermore, we compared the prediction accuracy of the tools Universal Analysis Software v1.2 (UAS), the FROG-kb, and GenoGeographer when inferring the ancestry of 503 Europeans, 22 non-Europeans, and 5 individuals with co-ancestry. The kit was highly sensitive with complete aiSNP profiles in samples with as low as 250pg input DNA. However, in line with others, we observed low read depth and occasional drop-out in some SNPs. Therefore, we suggest not using less than the recommended 1ng of input DNA. FROG-kb and GenoGeographer accurately predicted both Europeans (99.6% and 91.8% correct, respectively) and non-Europeans (95.4% and 90.9% correct, respectively). The UAS was highly accurate when predicting Europeans (96.0% correct) but performed poorer when predicting non-Europeans (40.9% correct). None of the tools were able to correctly predict individuals with co-ancestry. Our study demonstrates that the use of multiple prediction tools will increase the prediction accuracy of BGA inference in forensic casework.


DNA Fingerprinting , Polymorphism, Single Nucleotide , Humans , Polymorphism, Single Nucleotide/genetics , DNA Fingerprinting/methods , Forensic Genetics/methods , Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , White People/genetics , Genetics, Population/methods , DNA/genetics
7.
Biochem Biophys Res Commun ; 711: 149909, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38615573

RNA analysis has shown great value in forensic science, such as body fluids and tissue identification, postmortem interval estimation, biological age prediction, etc. Currently, most RNA follow-up experiments involve reverse transcription (RT) procedures. It has been shown that the RT step is variable and has a greater impact on subsequent data analysis, especially for forensic trace samples. However, the pattern of variation between different RNA template inputs and complementary DNA (cDNA) yield is unclear. In this study, a series of 2-fold gradient dilutions of RNA standards (1 µg/µL - 0.24 ng/µL) and forensic samples (including blood samples, saliva samples, bloodstains, and saliva stains) were reverse-transcribed using EasyQuick RT MasterMix. The obtained cDNA was quantified by droplet digital PCR (ddPCR) to assess the RT yield of the ACTB gene. The results showed that the 125 ng RNA template had the highest RT yield in a 10 µL RT reaction system with the selected kit. For all stain samples, the RT yield improved as the amount of RNA template input increased since RNA quantities were below 125 ng. As many commercialized reverse transcription kits using different kinds of enzymes are available for forensic RNA research, we recommend that systematic experiments should be performed in advance to determine the amount of RNA input at the optimum RT yield when using any kit for reverse transcription experiments.


RNA , Humans , RNA/genetics , RNA/analysis , Reverse Transcription , Saliva/metabolism , Saliva/chemistry , Forensic Genetics/methods , Forensic Genetics/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/methods , Reference Standards , DNA, Complementary/genetics , Blood Stains , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards
8.
Anim Genet ; 55(3): 440-451, 2024 Jun.
Article En | MEDLINE | ID: mdl-38644567

Commercial panels of microsatellite (STR) loci are focused on the use of DNA of the domestic dog (Canis lupus familiaris) and are often inapplicable for genotyping the DNA of the gray wolf (Canis lupus lupus). We propose a CPlex test system, including one hexa- and 12 tetranucleotide autosomal STR loci, as well as two sex loci, that is equally efficient in DNA identification of biological samples of the wolf and the dog. Analysis of molecular variance between samples revealed significant differentiation values (FST = 0.0784, p < 0.001), which allows to use the panel to differentiate wolf and dog samples. Population subdivision coefficients (θ-values) were calculated for each of the 13 STR loci of the developed test system. It was shown that the values of the genotype frequency for dogs and wolves, without and with considering the θ-value, differ by three orders of magnitude (for dogs 8.9 × 10-16 and 2.1 × 10-14 and for wolves 1.9 × 10-15 and 4.5 × 10-14, respectively). The use of population subdivision coefficients will allow to identify the most reliable results of an expert identification study and the power of exclusion provided by the STR loci of the CPlex test system makes it possible to achieve a reliable level of evidence in forensic DNA analysis of both wolves and dogs. The test system has been validated for use in forensic identification of the dog and wolf based on biological traces found at crime scenes, as well as for individual identification and establishing biological relationship of animals of these species.


Microsatellite Repeats , Wolves , Animals , Wolves/genetics , Dogs/genetics , Forensic Genetics/methods , DNA/genetics , Genotype , Male , Female
9.
Hum Genet ; 143(3): 371-383, 2024 Mar.
Article En | MEDLINE | ID: mdl-38499885

Massively parallel sequencing (MPS) has emerged as a promising technology for targeting multiple genetic loci simultaneously in forensic genetics. Here, a novel 193-plex panel was designed to target 28 A-STRs, 41 Y-STRs, 21 X-STRs, 3 sex-identified loci, and 100 A-SNPs by employing a single-end 400 bp sequencing strategy on the MGISEQ-2000™ platform. In the present study, a series of validations and sequencing of 1642 population samples were performed to evaluate the overall performance of the MPS-based panel and its practicality in forensic application according to the SWGDAM guidelines. In general, the 193-plex markers in our panel showed good performance in terms of species specificity, stability, and repeatability. Compared to commercial kits, this panel achieved 100% concordance for standard gDNA and 99.87% concordance for 14,560 population genotypes. Moreover, this panel detected 100% of the loci from 0.5 ng of DNA template and all unique alleles at a 1:4 DNA mixture ratio (0.2 ng minor contributor), and the applicability of the proposed approach for tracing and degrading DNA was further supported by case samples. In addition, several forensic parameters of STRs and SNPs were calculated in a population study. High CPE and CPD values greater than 0.9999999 were clearly demonstrated and these results could be useful references for the application of this panel in individual identification and paternity testing. Overall, this 193-plex MPS panel has been shown to be a reliable, repeatable, robust, inexpensive, and powerful tool sufficient for forensic practice.


Forensic Genetics , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Paternity , Polymorphism, Single Nucleotide , Humans , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats/genetics , Forensic Genetics/methods , Male , Female , Genotype , Alleles , Genetics, Population/methods
10.
J Forensic Sci ; 69(3): 869-879, 2024 May.
Article En | MEDLINE | ID: mdl-38308398

Aging is a complex process influenced by genetic, epigenetic, and environmental factors that lead to tissue deterioration and frailty. Epigenetic mechanisms, such as DNA methylation, play a significant role in gene expression regulation and aging. This study presents a new age estimation model developed for the Turkish population using blood samples. Eight CpG sites in loci TOM1L1, ELOVL2, ASPA, FHL2, C1orf132, CCDC102B, cg07082267, and RASSF5 were selected based on their correlation with age. Methylation patterns of these sites were analyzed in blood samples from 100 volunteers, grouped into age categories (20-35, 36-55, and ≥56). Sensitivity analysis indicated a reliable performance with DNA inputs ≥1 ng. Statistical modeling, utilizing Multiple Linear Regression, underscores the reliability of the primary 6-CpG model, excluding cg07082267 and TOM1L1. This model demonstrates strong correlations with chronological age (r = 0.941) and explains 88% of the age variance with low error rates (MAE = 4.07, RMSE = 5.73 years). Validation procedures, including a training-test split and fivefold cross-validation, consistently confirm the model's accuracy and consistency. The study indicates minimal variation in error scores across age cohorts and no significant gender differences. The developed model showed strong predictive accuracy, with the ability to estimate age within certain prediction intervals. This study contributes to the age prediction by using DNA methylation patterns, which can have disparate applications, including forensic and clinical assessments.


Aging , Amidohydrolases , CpG Islands , DNA Methylation , Epigenesis, Genetic , Fatty Acid Elongases , Transcription Factors , Humans , Male , Female , Adult , Middle Aged , Young Adult , Aged , Fatty Acid Elongases/genetics , Linear Models , Turkey , Aged, 80 and over , Forensic Genetics/methods , Reproducibility of Results , Models, Statistical , LIM-Homeodomain Proteins/genetics , Muscle Proteins/genetics
11.
Forensic Sci Int ; 356: 111950, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301433

Evaluation of DNA methylation (DNAm) patterns is a promising tool for age estimation. The duplex droplet digital PCR (ddPCR) method has been recently investigated for DNAm evaluation, revealing to be a potential methodology for DNAm evaluation and molecular age estimation. In this study, we evaluated DNAm levels of CpGs located at the three age-associated genes ELOVL2, FHL2 and PDE4C using ddPCR to develop an age prediction model. Blood-derived DNA samples from 58 healthy individuals (42 women and 16 men; aged 1-93 years old) were submitted to bisulfite conversion followed by ddPCR using dual-labeled probes targeting methylated and unmethylated DNA sequences. Simple linear regression statistics revealed a strong correlation between DNAm levels and chronological age for FHL2 (R = 0.948; P = 1.472 × 10-29) and PDE4C (R = 0.819; P = 3.917 × 10-15), addressing only one CpG for each gene. For the ELOVL2 gene, evaluating five CpG sites in simultaneous, revealed a strong age correlation (R = 0.887; P = 2.099 × 10-20) in a simple linear regression statistics and very strong age correlation (R = 0.926; P = 2.202 × 10-25) when using quadratic regression statistics. The multivariable regression analysis, using methylation information captured on ELOVL2 (squared), FHL2 and PDE4C genes, revealed a very strong age correlation (R = 0.970; P = 5.356 ×10-33), explaining 93.7 % of age variance, displaying a mean absolute deviation (MAD) between chronological and predicted age of 4.657 years (RMSE = 6.044). We postulate that the ddPCR method should be further investigated for DNAm-based age prediction, because it is a relatively simple and an accurate method that can be routinely used in forensic laboratories for testing a few numbers of markers.


Aging , DNA Methylation , Male , Humans , Female , Infant , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Aging/genetics , CpG Islands/genetics , Forensic Genetics/methods , Genetic Markers , Polymerase Chain Reaction
12.
Leg Med (Tokyo) ; 68: 102416, 2024 May.
Article En | MEDLINE | ID: mdl-38325234

X-chromosome short tandem repeats (X-STRs) are useful for human identification, especially in complex kinship scenarios. Since forensic statistical parameters vary among populations and the X-STRs population data for the diverse population of Peninsular Malaysia's are unavailable, this attempt for Indians (n = 201) appears forensically relevant to support the 12 X-STRs markers' evidential value for human identification in Malaysia. The Qiagen Investigator® Argus X-12 QS kit showed that DXS10135 was the most polymorphic locus with high genetic diversity, polymorphism information richness, heterozygosity, and exclusion power. Based on allele frequencies, the strength of discrimination and mean exclusion chance (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) values for the Malaysian Indians were ≥0.999997790686228. As for haplotype frequencies, the overall discrimination power and mean exclusion probability (MECKrüger, MECKishida, MECDesmarais, and MECDesmaraisDuo) were ≥0.9999984801951. The genetic distance, neighbor-joining phylogenetic tree, and principal component analysis also supported the evidential value of the 12 X-STRs markers for forensic practical caseworks in Malaysia.


Chromosomes, Human, X , Gene Frequency , Genetic Variation , Microsatellite Repeats , Humans , Malaysia , Microsatellite Repeats/genetics , Chromosomes, Human, X/genetics , Genetics, Population/methods , Forensic Genetics/methods , India , Genetic Markers , DNA Fingerprinting/methods , Male , Haplotypes , Female , Polymorphism, Genetic
13.
Leg Med (Tokyo) ; 68: 102369, 2024 May.
Article En | MEDLINE | ID: mdl-38325235

Species specificity of commercial human DNA quantification kits and short tandem repeat (STR) profiling kits was examined using primate DNA samples. These samples comprised 33 individuals from eight primate species, each with gender and kinship data, including human (Homo sapiens), chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and orangutan (Pongo pygmaeus) of Hominidae family, and Japanese macaque (Macaca fuscata), long-tailed macaque (Macaca fascicularis), hamadryas baboon (Papio hamadryas), and savannah monkey (Chlorocebus sp.) of Cercopithecidae family. The findings revealed varying levels of cross-species amplifications in all non-human DNA samples that correlated with their evolutionary proximity to humans, both kit types. Moreover, cross-species amplification, including female DNA samples, was observed in a Y-chromosomal STR profiling kit. Additionally, species specificity differed among the commercial kits examined. The cross-species amplification data presented in this study offer valuable assistance in interpreting the results of individual human identification in forensic cases involving non-human primates.


DNA , Microsatellite Repeats , Species Specificity , Animals , Humans , Microsatellite Repeats/genetics , DNA/genetics , DNA/analysis , Female , Male , DNA Fingerprinting/methods , Primates/genetics , Polymerase Chain Reaction/methods , Forensic Genetics/methods
14.
Forensic Sci Int Genet ; 69: 103009, 2024 03.
Article En | MEDLINE | ID: mdl-38237274

Population data have become available for sequence data to aid forensic investigations and prepare the forensic community in the move towards implementing NGS methods. This comes with a need for updated population genetic parameters estimates to allow DNA evidence evaluations using sequence data. Initial work has been done on a small sample and here we expand this work by providing estimates of population structure and relatedness for autosomal STR data generated by sequencing technologies. We also discuss the effect of inbreeding on forensic calculations and discuss why the use of genotypic-based estimates may be preferred over allelic-based estimates.


Forensic Genetics , Inbreeding , Humans , Forensic Genetics/methods , Microsatellite Repeats , Genotype , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA Fingerprinting/methods
15.
Leg Med (Tokyo) ; 68: 102415, 2024 May.
Article En | MEDLINE | ID: mdl-38280273

For human identification, the quality and quantity of DNA must be sufficient for amplification and analysis. When DNA extraction from bone tissues and teeth is required, the optimal skeletal elements should be selected as samples for DNA extraction because DNA yield differs among elements. Recently, some studies have reported that a high quantity of high-quality DNA can be extracted from the small cancellous bones of the hands and feet. In this study, we evaluated the effectiveness of small cancellous bones in the human identification of skeletal remains in routine forensic genetic casework. Cancellous bones [phalanges, (meta)carpal bones, and (meta)tarsal bones)] and the cortical bones (femur and petrous bones) and teeth, which have generally been recommended as samples, were collected from the same individuals that needed identifying using DNA analysis in our laboratory. The quantity of DNA from small cancellous bones tended to be higher than that from cortical bones, and the quality from the former was as high as that from the latter. This study showed that in routine forensic casework, the small cancellous bones of the hands and feet should be actively selected as samples for DNA testing.


DNA , Humans , DNA/analysis , Forensic Genetics/methods , Male , Bone and Bones , DNA Fingerprinting/methods , Female , Cortical Bone , Middle Aged , Tooth , Adult , Aged , Forensic Anthropology/methods , Cancellous Bone
16.
Forensic Sci Int Genet ; 69: 102979, 2024 03.
Article En | MEDLINE | ID: mdl-38043150

Biological traces discovered at crime scenes hold significant significance in forensic investigations. In cases involving mixed body fluid stains, the evidentiary value of DNA profiles depends on the type of body fluid from which the DNA was obtained. Recently, coding region polymorphism analysis has proved to be a promising method for directly linking specific body fluids to their respective DNA contributors in mixtures, which may help to avoid "association fallacy" between separate DNA and RNA evidence. In this study, we present an update on previously reported coding region Single Nucleotide Polymorphisms (cSNPs) by exploring the potential application of coding region Insertion/Deletion polymorphisms (cInDels). Nine promising cInDels, selected from 70 mRNA markers based on stringent screening criteria, were integrated into an existing mRNA profiling assay. Subsequently, the body fluid specificity of our cInDel assay and the genotyping consistency between complementary DNA (cDNA) and genomic DNA (gDNA) were examined. Our study demonstrates that cInDels can function as important multifunctional genetic markers, as they provide not only the ability to confirm the presence of forensically relevant body fluids, but also the ability to associate/dissociate specific body fluids with particular donors.


Body Fluids , Humans , RNA, Messenger/genetics , RNA , Genetic Markers , DNA/genetics , Forensic Genetics/methods , Semen , Saliva
17.
Electrophoresis ; 45(5-6): 505-516, 2024 Mar.
Article En | MEDLINE | ID: mdl-38037287

Insertion/deletion polymorphisms (InDels) are a category of highly prevalent markers in the human genome, characterized by their distinctive attributes, including short amplicon sizes and low mutation rates, which have shown great potential in forensic applications. Multi-allelic InDel and multi-InDel markers, collectively abbreviated as MM-InDels, were developed to enhance polymorphism by the introduction of novel alleles. Nevertheless, the relatively low mutation rates of InDels, coupled with the founder effect, result in distinct allele frequency distributions among populations. The divergent characteristics of InDels in different populations also pose challenges to the establishment of universally efficient InDel multiplex assays. To enhance the system efficiency of the InDel assay and its applicability across diverse populations, 39 MM-InDels with high polymorphism in five different ancestry superpopulations were selected from the 1000 Genomes Project dataset and combined with an amelogenin gender marker to construct a multiplex assay (named MMIDplex). The combined power of discrimination and the cumulative probability of exclusion of 39 MM-InDels were 1 - 1.3 × 10-23 and 1 - 9.83 × 10-6 in the Chinese Han population, and larger than 1-10-19 and 1-10-4 in the reference populations, relatively. These results demonstrate that the MMIDplex assay has the potential to obtain sufficient power for individual identification and paternity test in global populations.


Forensic Genetics , Polymorphism, Genetic , Humans , Forensic Genetics/methods , Gene Frequency/genetics , Asian People , INDEL Mutation , Genetics, Population , China
18.
Electrophoresis ; 45(5-6): 489-504, 2024 Mar.
Article En | MEDLINE | ID: mdl-38037290

The continual investigation of novel genetic markers has yielded promising solutions for addressing the challenges encountered in forensic DNA analysis. In this study, we have introduced a custom-designed panel capable of simultaneously amplifying 41 novel Multi-insertion/deletion (Multi-InDel) markers and an amelogenin locus using the capillary electrophoresis platform. Through a developmental validation study conducted in accordance with guidelines recommended by the Scientific Working Group on DNA Analysis Methods, we demonstrated that the new Multi-InDel system exhibited the sensitivity to produce reliable genotyping profiles with as little as 62.5 pg of template DNA. Accurate and complete genotyping profiles could be obtained even in the presence of specific concentrations of PCR inhibitors. Furthermore, the maximum amplicon size for this system was limited to under 220 bp in the genotyping profile, resulting in its superior efficiency compared to commercially available short tandem repeat kits for both naturally and artificially degraded samples. In the context of mixed DNA analysis, the Multi-InDel system was proved informative in the identification of two-person DNA mixture, even when the template DNA of the minor contributor was as low as 50 pg. In conclusion, a series of performance evaluation studies have provided compelling evidence that the new Multi-InDel system holds promise as a valuable tool for forensic DNA analysis.


DNA Fingerprinting , DNA , Humans , Genotype , DNA/genetics , Microsatellite Repeats/genetics , DNA Primers , Forensic Genetics/methods , Multiplex Polymerase Chain Reaction/methods
19.
Int J Legal Med ; 138(3): 781-786, 2024 May.
Article En | MEDLINE | ID: mdl-38030939

The identification of the type of body fluid in crime scene evidence may be crucial, so that the efforts are high to reduce the complexity of these analyses and to minimize time and costs. Reliable immunochromatographic rapid tests for specific and sensitive identification of blood, saliva, urine and sperm secretions are already routinely used in forensic genetics. The recently introduced Seratec® PMB test is said to detect not only hemoglobin, but also differentiate menstrual blood from other secretions containing blood (cells) by detecting D-dimers. In our experimental set-up, menstrual blood could be reliably detected in mock forensic samples. Here, the result was independent of sample age and extraction buffer volume. It was also successfully demonstrated that all secretions without blood cells were negative for both, hemoglobin (P) and D-dimer (M). However, several blood cell-containing secretions/tissues comprising blood (injury), nasal blood, postmortem blood and wound crust also demonstrated positive results for D-dimer (M) and were therefore false positives. For blood (injury) and nasal blood, this result was reproduced for different extraction buffer volumes. The results of this study clearly demonstrate that the Seratec® PMB test is neither useful nor suitable for use in forensic genetics because of the great risk of false positive results which can lead to false conclusions, especially in sexual offense or violent acts.


Body Fluids , Semen , Humans , Male , Semen/chemistry , Body Fluids/chemistry , Saliva/chemistry , Bodily Secretions/chemistry , Hemoglobins/analysis , Forensic Genetics/methods
20.
Int J Legal Med ; 138(3): 1205-1219, 2024 May.
Article En | MEDLINE | ID: mdl-37853302

Blood-containing mixtures often appear in murder and robbery cases, and their identification plays a significant role in solving crimes. In recent years, the co-detection of DNA methylation markers (CpG) and single nucleotide polymorphism (SNP) markers has been shown to be a promising tool for the identification of semen and its donor. However, similar research on blood stains that are frequently found at crime scenes has not yet been reported. In this study, we employed blood-specific CpG-linked SNP markers (CpG-SNP) for blood-specific genotyping and the linking of blood and its donor. The tissue-specific CpG markers were screened from the literature and further verified by combining bisulfite conversion with amplification-refractory mutation system (ARMS) technology. Meanwhile, adjacent SNP markers with a minor allele frequency (MAF) greater than 0.1 were selected within 400 bp upstream and downstream of the CpG markers. SNP genotyping was performed using SNaPshot technology on a capillary electrophoresis (CE) platform. Finally, a multiplex panel, including 19 blood-specific CpG linked to 23 SNP markers, as well as 1 semen-specific CpG, 1 vaginal secretion-specific CpG, and 1 saliva-specific CpG marker, was constructed successfully. The panel showed good tissue specificity and blood stains stored at room temperature for up to nine months and moderately degraded (4 < DI < 10) could be effectively identified. Moreover, it could also be detected when blood content in the mixed stains was as low as 1%. In addition, 15 ng of DNA used for bisulfite conversion was required for obtaining a complete profile. The cumulative discrimination power of the panel among the Han population of northern China could reach 0.999983. This is the first investigation conducted for the simultaneous identification of blood and its donor regardless of other body fluids included in mixed stains. The successful construction of the panel will play a vital role in the comprehensive analysis of blood-containing mixtures in forensic practice.


Body Fluids , Polymorphism, Single Nucleotide , Female , Humans , Sulfites , Saliva , DNA Methylation , Genetic Markers , Forensic Genetics/methods
...